112 research outputs found

    Hidden Homelessness: A Trauma-informed Narrative Approach to Treating Rural Families Facing Homelessness

    Get PDF
    Housing is a crucial part of survival and one’s ability to engage in life. There is an increasing population of both individuals and families who live without safe, quality, stable housing. Housing insecurity is a concern in both urban and rural areas, with rural homelessness presenting unique characteristics and challenges. To better understand rural homelessness and its effect on families, research was conducted on many factors including: population statistics, characteristics and common issues, problems, risk factors, engagement, terminology, and frameworks. It becomes evident that homelessness has severe implications physically, emotionally, and mentally for both children and adults. This synthesis of research will be important in better understanding homelessness and the population it affects for the purpose of developing an evidence-based family practice curriculum

    Hydraulic flow through a channel contraction: multiple steady states

    Get PDF
    We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width b0b_0 ending in a linear contraction of minimum width bcb_c. Experimentally, we observe upstream steady and moving bores/shocks, and oblique waves in the contraction, as single and multiple steady states, as well as a steady reservoir with a complex hydraulic jump in the contraction occurring in a small section of the bc/b0b_c/b_0 and Froude number parameter plane. One-dimensional hydraulic theory provides a comprehensive leading-order approximation, in which a turbulent frictional parametrization is used to achieve quantitative agreement. An analytical and numerical analysis is given for two-dimensional supercritical shallow water flows. It shows that the one-dimensional hydraulic analysis for inviscid flows away from hydraulic jumps holds surprisingly well, even though the two-dimensional oblique hydraulic jump patterns can show large variations across the contraction channel

    Numerical Simulation of the Korteweg–de Vries Equation with Machine Learning

    Get PDF
    A machine learning procedure is proposed to create numerical schemes for solutions of nonlinear wave equations on coarse grids. This method trains stencil weights of a discretization of the equation, with the truncation error of the scheme as the objective function for training. The method uses centered finite differences to initialize the optimization routine and a second-order implicit-explicit time solver as a framework. Symmetry conditions are enforced on the learned operator to ensure a stable method. The procedure is applied to the Korteweg–de Vries equation. It is observed to be more accurate than finite difference or spectral methods on coarse grids when the initial data is near enough to the training set

    A Radial Basis Function Finite Difference Scheme for the Benjamin–Ono Equation

    Get PDF
    A radial basis function-finite differencing (RBF-FD) scheme was applied to the initial value problem of the Benjamin–Ono equation. The Benjamin–Ono equation has traveling wave solutions with algebraic decay and a nonlocal pseudo-differential operator, the Hilbert transform. When posed on ℝ, the former makes Fourier collocation a poor discretization choice; the latter is challenging for any local method. We develop an RBF-FD approximation of the Hilbert transform, and discuss the challenges of implementing this and other pseudo-differential operators on unstructured grids. Numerical examples, simulation costs, convergence rates, and generalizations of this method are all discussed

    Making an Impact: The Process of Planning and Organizing an After-School Program in a Small Community

    Get PDF
    To be their best, people need relationships. Social support systems are at the base of what makes a successful individual. Whether that be through sports teams, clubs, or any other facet, social support is the driving force for a healthy lifestyle. After-school programs offer students another opportunity to receive mentorship and build relationships that can impact the trajectory of their lives. This paper highlights Impact 180 – an after-school program located in Orange City, Iowa. The involved researchers used and discussed different community organizing methods and techniques to advocate for and raise funds for the durability, sustainability, and flourishing of an after-school program that reaches and impacts students who most need it

    Dynamics of three-dimensional gravity-capillary solitary waves in deep water

    Get PDF
    A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatially localized in both directions. Branches of both line and lump solitary waves are computed via a numerical continuation method. The stability of each type of wave is examined. The transverse instability of line solitary waves is predicted by a similar instability of line solitary waves in the nonlinear Schrödinger equation. The spectral stability of lumps is predicted using the waves' speed energy relation. The role of wave collapse in the stability of these waves is also examined. Numerical time evolution is used to confirm stability predictions and observe dynamics, including instabilities and solitary wave collisions

    Atmospheric Propagation of High Energy Lasers: Thermal Blooming Simulation

    Get PDF
    High Energy Laser (HEL) propagation through turbulent atmosphere is examined via numerical simulation. The beam propagation is modeled with the paraxial equation, which in turn is written as a system of equations for a quantum fluid, via the Madelung transform. A finite volume solver is applied to the quantum fluid equations, which supports sharp gradients in beam intensity. The atmosphere is modeled via a coupled advection-diffusion equation whose initial data have Kolmogorov spectrum. In this model the combined effects of thermal blooming, beam slewing, and deep turbulence are simulated

    Evolution of Coronal Magnetic Field Parameters during X5.4 Solar Flare

    Get PDF
    The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface |Bz|≥ 300 G, areas of flare brightening seen in SDO Atmospheric Imaging Assembly imagery, and areas with surface |B| ≥ 1000 G and high twist. Time series of the magnetic field parameters were analyzed to investigate the evolution of the coronal field during the solar flare event and discern pre-eruptive signatures. The data shows that areas with |B| ≥ 1000 G and |Tw|≥ 1.5 align well with areas of initial flare brightening during the pre-flare phase and at the beginning of the eruptive phase of the flare, suggesting that measurements of the photospheric magnetic field strength and twist can be used to predict the flare location within an active region if triggered. Additionally, the evolution of seven investigated magnetic field parameters indicated a destabilizing magnetic field structure that could likely erupt
    • …
    corecore